An Efficient One - Point Extrapolation Method for Linear Convergence
نویسندگان
چکیده
For iteration sequences otherwise converging linearly, the proposed one-point extrapolation method attains a convergence rate and efficiency of 1.618. This is accomplished by retaining an estimate of the linear coefficient from the previous step and using the estimate to extrapolate. For linear convergence problems, the classical Aitken-Steffensen 6 -process has an efficiency of just -J2, while a recently proposed fourth-order method reaches an efficiency of 1.587. Not only is the method presented here more efficient, but it is also quite straightforward. Examples given are for Newton's method in finding multiple polynomial roots and for locating a fixed point of a nonlinear function.
منابع مشابه
Augmented Lagrangian method for solving absolute value equation and its application in two-point boundary value problems
One of the most important topic that consider in recent years by researcher is absolute value equation (AVE). The absolute value equation seems to be a useful tool in optimization since it subsumes the linear complementarity problem and thus also linear programming and convex quadratic programming. This paper introduce a new method for solving absolute value equation. To do this, we transform a...
متن کاملAn efficient method for the numerical solution of Helmholtz type general two point boundary value problems in ODEs
In this article, we propose and analyze a computational method for numerical solution of general two point boundary value problems. Method is tested on problems to ensure the computational eciency. We have compared numerical results with results obtained by other method in literature. We conclude that propose method is computationally ecient and eective.
متن کاملReview of two vector extrapolation methods of polynomial type with applications to large-scale problems
An important problem that arises in different areas of science and engineering is that of computing limits of sequences of vectors {xn}, where xn ∈CN with N very large. Such sequences arise, for example, in the solution of systems of linear or nonlinear equations by fixed-point iterative methods, and limn→∞xn are simply the required solutions. Inmost casesof interest, these sequences converge t...
متن کاملHigh order quadrature based iterative method for approximating the solution of nonlinear equations
In this paper, weight function and composition technique is utilized to speeds up the convergence order and increase the efficiency of an existing quadrature based iterative method. This results in the proposition of its improved form from a two-point quadrature based method of convergence order ρ = 3 with efficiency index EI = 1:3161 to a three-point method of convergence order ρ = 8 with EI =...
متن کاملAn efficient method for the numerical solution of functional integral equations
We propose an efficient mesh-less method for functional integral equations. Its convergence analysis has been provided. It is tested via a few numerical experiments which show the efficiency and applicability of the proposed method. Attractive numerical results have been obtained.
متن کامل